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INTRODUCTION

This paper contains a further statistical analysis of simulated USB static dopp-
ler tracking data. The use of the GSFC Apollo Centralized Computer System, ‘
the cooperation of station personnel at Guam, and the initial establishment of
test parameters were all arranged by George Q. Clark of the Manned Flight
Support Office., The data under consideration were received from Guam on

July 7, 1966. The transmitter output was translated in frequency and attenuated
so that the resulting signal effectively simulated zero doppler frequency. The
doppler measurements were made in the destruct mode at a sampling rate of 10
per second and recorded in units of cm. per second. The receiver bandwidth

was 50 cps throughout this test.

The data were taken in a number of '"runs'. FEach run consisted of several sam-
ples of observations: the first taken at ~-132dbm (approximately 16 db above
threshold), the second at -134dbm, etc. in steps of 2 db until threshold was
reached. Then observations were taken in the same steps of 2 db back up to

~132 dbm. The number of observations in each step varied from 30 to 1000.

The large amount of data provided an opportunity to investigate empirically the
underlying probability distribution of the doppler data. Probability plots were
used to determine how well the data followed a Gaussian distribution. As ex-
pected from previous work [ 1] for high S/N the distribution is very nearly
Gaussian, but for lower S/N it departs significantly from it, In the light of the
findings a model based on a contaminated Gaussian distribution is suggested to
describe the distribution at the lower S/N, and the problem of éstimati ng the
mean (bias) and dispersion or precision of the observations is discussed for this

model.



A GRAPHICAL TEST FOR NORMALITY

E EE NN IR N N BN S BN BN I B B B e e e e G

PROBABILITY PLOTS

A simple but effective graphical method to determine whether a random sample

of measurements, x_, x

1 pr reres X departs from a Gaussian distribution,
n

| —tx)®
exp[ T ix-p :’-m<x<m’

fx:;y,q) = > |
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is to plot the sample on normal probability paper. The sample is first ordered
from smallest to largest value, letting x(l) be the smallest value, x(z) the next

smallest, etc. The ordered sample values,

are called the order statistics of the sample.

.th - . - 3 -
The i  order statistic, » 1s plotted on the vertical axis of normal probability

)

paper vs on the horizontal axis fori=1, ..., n. The horizontal axis of

n+tl
the graph paper is scaled from 0 to 1 by stretching out the tails near 0 and 1 so
that a reasonably ""good" sample from a Gaussian distribution plots more or less
along a straight line. Because of the randomness of real measurements, the
points from a sample will deviate from the theoretical straight line, but for
large samples, the linear tendency is unmistakable., For example, the readings

at ~-132 dbm (Step 0) for Run 2 of the July 7th data as plotted in Figure 3 clearly

seem to come from a distribution that is very close to Gaussian.

Departures from normality show up in probability plots as non-linearities. For
example, if the sample is from a rectangular distribution (dashed line, Figure 1)
instead of a Gaussian (solid line), the plot will resemble an "S" curve (dashed

line, Figure 2) instead of the straight line for the Gaussian since the extreme
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Figure 1

Figure 2

measurements are not as far out as they would be for the Gaussian. On the
other hand, if the sample comes from a distribution with more probability
on the tails than a normal, for example, a Cauchy distribution,

£(x) = 1 1

- < x < @
2
L+(x-u)

b4

The plot will have a reversed ''S" shape (dotted line, Figure 2). Although
the Cauchy density function looks very much like the normal curve when
grapheci, there is considerably more probability way out on the tails so

that the chance of extremely large or small readings is much greater.



Hence, the reversed "S'" shape of the probabilit lots.
p Yy p

CONTAMINATION MODELS

Quite often sample data is basically Gaussian except that it is contaminated
by a few (or many) measurements from some other distribution. That is,
some of the measurements are influenced by unusual errors caused by any-
thing from bursts of noise in a circuit to blunders in reading a dial. These
measurements are called contaminants and carry misleading information
about the value being estimated. Sometimes they show up as outliers, i,e.
outrageously large or small readings, which can simply be discarded
before using the data. More often they are mixed in with the good data and
are difficult to identify,

One simple c‘ontamination model is given by the density function

-(x-u)®

exp
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2
1 -(xu)
2 ?

f (x)=(Q1-v)
C

—o < x < o,
where 0 <y <1, 0 >> g, In this model it is assumed that 100 (1-y) per
cent of the measurements are '"good', i.e. come from the primary Gaussian
distribution with standard deviation UO, but 100 v per cent of them come
from a contaminating distribution, here also Gaussian, but with a very
much larger standard deviation g .

For example, if ¥ =. 01 and 0‘l = 1000, a sample of size 100 from this
distribution typically will appear to be quite normal except perhaps 1 or

2 extremely large or small measurements which obviously should be dis-
carded before computing estimates of 4 and o, - However, if y = .10 and

01 = 30’0, the problem is more difficult since the contaminants are frequent

and well mixed in with the '"good'' data.

The model above is an example of scale contamination because the contam-
inating distribution has the same mean as the primary distribution, but
it has a much larger standard deviation. Other models of scale contamin-

ation with non-normal or even unsymmetric contaminations are possible.

4.




PROBABILITY PLOTS OF THE JULY 7 DOPPLER DATA

Probability plots of some of the July 7 data are given in Figures 3 through 8.
Samples of about 500 readings are plotted for S/N from -132 dbm (Step 0) to
-146 dbm (Step 7). On each graph the point (x(i) , ~ : I ) is labeled " i "
for identification. Not all of the points are plotted because of the lack of

space on the graph, but, for example, in Figure 5 the points corresponding
to x (51)° X (52)° * " °° x(99) would fall about on a straight line between the

points for x(SO)’ x(lOO)' Also, the graph must be monotonically in-

creasing.

At Step 0 (Figure 4) the plot is still remarkably straight except for three

outliers x(l) R x(498), and x(499). By Step 4 (Figure 5) the points from x

to x(498) appear to be from a Gaussian distribution. At Step 6 (Figure 6) (22)
about the smallest 4 per cent and the largest 8 per cent of the readings are
not from the Gaussian distribution which seems to characterize the rest of
them. This tendency increases with decreasing signal level so that by

Step 7 (Figure 8) only about the middle 50 per cent seem to be from the

primary distribution. Even then, that middle 50 per cent plots very straight.

Thus, as the S/N decreases the linear shape gives way to the inverted "'S"
shape characteristic of a contaminated Gaussian discussed in the previous
section, To illustrate, a theoretical curve for a scale contaminated
Gaussian distribution with vy =, 08, co = 14, and 01 = 84 is drawn in Figure 9.
Compare this curve with the empirical plot in Figure 6 and notice the

similarity.

ESTIMATION OF UNKNOWN PARAMETERS FROM PROBABILITY PLOTS

As described above, probability plots of samples from a Gaussian distrib-
ution tend to follow a straight line. The intercept and the slope of this
theoretical line are determined by the value of the mean g and the standard
deviation 0, respectively, of the distribution. The ordinate at which the
line crovsses the 50 per cent abscissa line will be the mean. Also, the

larger the 0, the steeper the slope.
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Accordingly, unknown values of 4 and 0 may be estimated from empirical
probability plots of the sample data. A line of best fit is drawn to the data,
either by least squares or some other method. The intercept of the 50

per cent abscissa line serves as an estimate of {4, and the slope of the line
when converted to proper units is the estimate of 3. These graphical
estimates based on least square curve fits have been thoroughly studied and

are known to have useful optimality properties [2].

In Figure 3 a straight line is drawn in to fit the data from Step 0. This line

was drawn simply by eye, but it is good enough to illustrate the ideas. The

graphical estimate of 0 from this line is 0 = 5.6 whereas the root mean square

estimate of 0 computed from the same data is 0 = 5.479. Whenever the
distribution is Gaussian the computed and the graphical estimates should

agree fairly well,

For lower S/N the observations appear to follow the contaminated Gaussian
model, and a line of best fit to all of the points is no longer meaningful.
However, since the center portion of each sample does seem to follow a
Gaussian law (the primary distribution referred to above), the tails

can be ignored and a line drawn to fit that central portion of the plots in
order to estimate the U and o, of the primary distribution. These are not
influenced by the tails of the sample and give estimates of the parameters

with little influence by contaminants.

In Figure 10 are plotted the root mean square estimates of 0 computed from
the samples for the various steps in the second run of July 7. These are
plotted with ".'s'., Plotted by "x's' are the graphical estimates. As ex-
pected the graphical estimates are much lower than the computed root mean

square estimates for the lower S/N.



At this juncture several conclusions should be noted.

1) For low S/N the usual cstimates of 4 and 7 computed
from the data, e. X=sample mean and s=sample root
mean square error, can be inefficient and misleading.

X is strongly affected by a wild measurement, especially
when the sample contains a small number of readings,
and can easily give a bad estimated value. For example,
if five readings are to be averaged, then one wild
contaminant among the five can overshadow the other
four.

e
i.

Also, if s is used to estimate the scatter of the data (and hence the precision
with which g is known) wild readings will make it appear that less precision
is possible than really is. From the probability plots it is clear that a
certain portion of the readings are from the primary Gaussian distribution
which has a much smaller standard deviation, 00, than the value s gives.

If these readings can be weighted more heavily in estimating {4 than the
contaminants are, then the standard error of estimation would be closer

to 0’0/ vii than to s/yn. Thus, it should be possible, by the use of care-
fully chosen estimates of 4, to know its value with better precision than the

value of s indicates.

2) On the other hand, the prccision possible in estimating y

will never be as good as if there were no contaminants.

This is clear for two reasons., First, the contaminants

are essentially wasted measurements, and second, even

more information is lost because one does not know which

of the readings are ''good' and which are '"bad'.
To summarize these two points with an example consider Step 6. The r.m,s.
estimate, s, is about 82. From this it follows the standard error of X as an
estimate of g will be about 82/ yn, where n is the number of readings to be
averaged for X. However, the graphical estimate of the standard deviation of
the primary Gaussian distribution is about 20, Thus, if there were no
contamination, X wauld have a standard error of about 20/ ym, about four

times better than 82/ yn. The precision with which 1 can actually be

estimated will be less than 82/ Vit but greater than 20/ yn. How close it is
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to 20/ yn1 depends on Yy, the proportion of contaminants, and the ratio 0’1/0 .
o

3) Hence, the problem is to find an estimate of 4 which
makes reasonably efficient use of the information in
the readings yet which is not seriously disturbed by
contamination. A short discussion of the statistical
principles involved is given in the next section.

ROBUST ESTIMATION

If a sample of size n, x .« ., X from a Gaussian distribution with mean
n

l’
. 2 .

U, variance 0 1is to be used to estimate the unknown value of i, then the

sample mean, X, has no serious competitor. Any other sample statistic

computed from the data to estimate 4 (e.g. sample median, sample midrange)

is relatively inefficient, i.e., wasteful of information.

If, however, the sample is from another distribution, for instance a Cauchy
(which looks very much like a normal curve when graphed), then X is not a
good estimate of 4. In any sample of measurements from a Cauchy it is
likely that there is a measurement so wild that it completely dominates the
rest causing X to be far from the true value of 4. For the Cauchy dis-
tribution the sample median is a far better estimate of g than X since it

is not as influenced by extremely large or small readings. To a lesser
extent the same holds true for the scale contaminated Gaussian model

discussed above.

Thus, the worth of any sample statistic as an estirmation of a parameter
depends on what distribution is being sampled, and a given sample statistic
may be the best possible in one case and almost worthless in another. If

a statistic or estimate is useful over a range of distributions, it is said

to be robust. For example, although the sample median is not the best for
either the normal or the Cauchy, it is reasonably good for either and hence
is robust over these two distributions. By using the median instead of

X one trades some efficiency in sampling from Gaussian for safety in case the




distribution is not really Gaussian but perhaps Cauchy-like instead.

With the doppler data under consideration the estimation problem seems to
be that the bias, ¢, must be estimated from data that is sometimes very
nearly Gaussian (high S/N) but at other times may be like a scale contamin-

ated Gaussian (lower S/N). To be useful an estimate of 4 must have two

properties:
a) If the data is Gaussian, the estimate must be reasonably
efficient. That is, there must be no serious waste of
information when compared with the best estimate X.
b) If the data is contaminated Gaussian, the estimate must

be relatively uninfluenced by wild measurements. In
this case it must be sufficiently superior to X to justify
the loss of efficiency in a).

Several types of estimates which possess these properties are the truncated

means, Winsorized means, and the Hodges-Lehman statistics [3],[4],

(5], [é].

Truncated means are computed by censoring extreme sample values before
averaging. For example, suppose the orbit determination program requires
an input every second and readings in the non-destruct mode can be taken

as often as every 1/10th second. One way to specify the input to the program
would be to use X, i.e., take the ten 1/10th second readings and average
them. (This is equivalent to taking just one 1 second reading.) Another
method would be to take the ten 1/10th second recadings, discard the smallest
and the largest and average the middle eight. This is called a 10 per cent

truncated mean, X {i.e., 10 per cent of the observations on each end

10y
are censored). If the contamination is severe, then the average of the

middle six observations, the 20 per cent truncated meanX could be used.

(.20)

It is well known that X is the most efficient estimate for the mean of a




Gaussian distribution for the case of uncontaminated data, but if there is
some contamination, then X loses efficiency and the truncated means are
better. Figure 11 is a graph of the asymptotic (large sample) efficien-
cies of means with various amounts of truncation. The graph, reproduced
here from [ 3], is based on a scale contaminated Gaussian model with

g, = 300. Truncated means for finite sample sizes will exhibit similar

1

characteristics.

Notice that even when the data is not contaminated, ¥ = 0, surprisingly

little efficiency is lost by using a truncated mean instead of X. From the
graph it can be seen that the asymptotic efficiency of Y(. 06) is about 97

per cent in the non-contaminated case. This efficiency can be interpreted to
mean that as much information is obtained about the unknown parameter

g from 97 observations using R as from 100 observations using i(. 06)"
Therefore, very little efficiency is lost by using these ''safe' estimates
when they are not really needed. However, when contamination is present,
it can be seen from Figure 11 that the truncated means will perform much
better than X. With only 3 per cent contamination Y(' 06) becomes as

efficient as X. With about 9 per cent contamination even the median is as

good as X.

The graph in Figure 11 is for 01 = 30’0. In the doppler data at Step 6 the
amount of contamination is greater and 01 is approximately equal to 600.
For this case the efficiency of X will fall off still more rapidly than in
Figure 11. Generally, the more severe the contamination, (i.e., either
¥ larger, 01/00 larger, or both) the greater the amount of censoring that
should be used. This is done, of course, at the price of decreased

efficiency in the noncontaminated case.

The Winsorized means, and more generally, the estimates based on weighted

10,




linear combinations of the order statistics, along with the Hodges-Lehman
type statistic are a little more complicated to explain than the truncated
means but exhibit similar useful properties. Just which one is the best
depends on several factors, especially how much and what kind of con-
tamination (or other non-Gaussian data) is expected, and what the cost or
loss functions are for bad estimates under the various conditions. If, for
example, the loss of efficiency in the high S/N case is of minor concern
compared to the cost of a bad estimate at lower S/N, then the 20 per cent

truncated mean will be preferred to the 10 per cent truncated mean.

SUMMARY AND CONCLUSION

In this report samples of simulated doppler tracking data with zero bias
were analyzed to determine characteristics of the error distribution. It
was found that, although for high S/N the error distributions are nearly
Gaussian, for lower S/N they depart significantly from the Gaussian and
follow more closely a scale contaminated Gaussian. The model could be
refined further, but the use of the scale contaminated Gaussian suffices

to determine the relative merit of various estimates of the bias.

The usual estimate, the sample mean, is not recommended because it has a
severe loss of efficiency in the presence of scale contamination. Several
other types of estimates which are known to be robust for contaminated

distributions are suggested.

Specific recommendations as to the best estimates depend on the following
items:

1) The data used in this report were obtained on one
occasion from one tracking station. Before any
application of the model suggested herein can be
made, it is necessary to obtain data from other
stations on other occasions to see if the character-
istics of this data are typical.

11.



3)

The requirements of the orbit determination program
will set restrictions on what kind of estimates can be
used. The number of doppler data samples available to
provide one input to the program will strongly influence
the choice of estimate.

A knowledge of the loss or cost functions associated with
the doppler estimation is needed so that an optimum
estimator may be determined for all S/N ratios that are
likely to be encountered during the actual mission.

12.
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SIGURE 11 Asymptotic efficiency, for location, of truncated means.
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